Transcriptomics: A Gateway to Understanding Diseases – Part 2

Written by Anil Bajnath, MD
Posted May 13, 2021

Dear Longevity Insider,

More on transcriptomics and how it's applied in modern medicine...

  • Embryogenesis and In-vitro Fertilization: The development of an embryo after fertilization of sperm with egg is called Embryogenesis. In vitro is the artificial technique for producing offspring. In In-vitro fertilization, mRNA is injected into the zygote and so transcriptomics is involved in this process.
  • Characterization of non-coding RNAs:  Non-coding RNAs are those molecules that are not translated into proteins. Non-coding RNAs have been found in various biological and pathological processes. Transcriptomics is used to find the role of these RNAs in any disease.
  • Detection of Transposable Elements in Genome: The sequence of DNA that can change its position within the genome is called a transposable element. It can create or reverse mutations and can also alter the cell genome’s size. Transcriptomics is used for the detection of transposable elements in the genome.
  • To produce Epigenetic Alterations: Epigenetics is the inherited genetic alterations that are not the result of changes in DNA sequence. At the level of transcription, genetic expression is influenced by epigenetic processes.
  • Role in Precision Medicine: In transcriptomics, it is studied how living organisms and their transcriptomes respond to diseases and environmental factors. The study of transcriptomes is very important in discovering the pathways of disease and for the development of effective drugs. The difference in the same disease has been studied in different people at the genomic level. In the early stage of disease, precision medicine can play a preventive and predictive role. 
  • Pharmacogenomics: The effects of genetic differences on drug metabolism are studied in Pharmacogenomics. It is one of the important applications of Transcriptomics. Due to genetic differences, different individuals respond differently to the drug. According to the genotype of the person most appropriate dosage is prescribed to the patient. Transcriptomics helps in Pharmacogenomics studies and processes.
  • Role in Disease Determinants and Causes: Screening of diseases and their causes can be determined using transcriptomics. This is of great use as this helps in the detection of complex diseases like breast cancer, acute myeloid leukemia, and cardiovascular diseases.  

Future of Healthcare

Transcriptomics is one of the fields undergoing massive research as researchers aim to understand better how changes in transcriptional activity can influence disease. In transcriptomics, the focus is on the mRNA of the gene expression. Causes of genetic disorders can be identified using transcriptomics. RNA analysis helps in the determination of disease and treatment markers and also the response of the genome to different drugs for treatment purposes. 

And it comes taking a closer look at health on a cellular level, here is my most prized research to date.

To your longevity,

Anil Bajnath MD
CEO/Founder, Institute for Human Optimization
Chief Medical Officer, Longevity Insider HQ